
Approved for Public Release, Distribution Unlimited

Local Oscillators and Mass Sensors 
for IMPACT

Department of Electrical Engineering-Electrophysics
Viterbi School of Engineering

University of Southern California
E-mail: eskim@usc.edu

Eun Sok Kim

May 15, 2008
The views, opinions, and/or findings contained in this presentation are those of the 

presenter and should not be interpreted as representing the official views, either expressed 
or implied, of the Defense Advanced Research Projects Agency or the Department of 

Defense.



USCMEMS
Approved for Public Release, Distribution Unlimited

Film Bulk Acoustic Resonator (FBAR)

Film bulk acoustic resonator (FBAR).
Large acoustic impedance mismatch on both sides of piezoelectric film.

SMRFBAR 

Impedance mismatch:                    Air                     Bragg reflector (frequency dependent)

Energy confinement:                  Excellent               Shear wave propagates into substrate

Power handling:                            Good                  Better (thermal flux through substrate)

Manufacturing:                          More masks          Multi-layers(>7): thickness control
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Improving Q factor of FBAR

Electrode

Dielectric loss: Qp (ZnO vs. AlN)
Ohmic loss (Rs) : Qs

Improve crystalline quality of piezoelectric film
Polish surface of ZnO or AlN.
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Minimize lateral acoustic loss (lamb wave) 
through the supportting areas.

Free standing structure

in-plane lateral modes
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Narrow Beam Supported FBARs on Silicon

Silicon
Al

LPCVD SixNy

ZnO
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Experimental Results of Narrow Beam 
Supported FBARs at 2 and 5GHz

 

Phase of FBAR impedance vs. 
frequency. FBAR Q vs frequency.
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Bulk Acoustic Resonators 
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High-tone bulk acoustic resonator (HBAR).

Film bulk acoustic resonator (FBAR).
Large acoustic impedance mismatch on both sides of piezoelectric film

Multiple resonances at an interval of tens of MHz. 
Extremely high Q with a low loss and double-side polished (~10Å) substrate. 
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Measured 3.6 GHz HBAR Characteristics

Q is around 19,000 at 3.677GHz
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HBAR
Transistor Wire bonding on HBAR; epoxy used for one-

side connection to PCB due to small area 
reserved on PCB.
PCB not good looking due to many trials and 
errors (bypassing and replacing) during this 
first phase of the oscillator building.

HBAR-Based 3.6 GHz Oscillator on PCB
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HBAR’s Q = 19,000 at 3.6 GHz
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Phase Noise of 3.6 GHz HBAR-Based Oscillator

Signal was down-converted 
to the required range of 
frequencies between 1MHz and 
30MHz.

Reference frequency was a 
frequency from a synthesizer 
that was externally referenced 
to a hydrogen maser 
ensemble.

Additive mixer noise was low 
enough to make these 
measurements. 

Alan Brannon of J. Kitching’s Group at NIST measured the phase noise 
on a Timing Solutions TSC 5120A phase noise test set.

Phase noise:  -102dBc/Hz at 10kHz offset              Power consumption: 3.2mW
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Measured Allan Deviation of HBAR-Based Pierce 
Oscillator
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Alan Brannon of J. Kitching’s Group 
at NIST measured the Allan deviation.
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Measured Allan Deviations 

The HBAR oscillator was locked up to NIST’s table-top CPT physics assembly
by mixing it with a 200 MHz signal from a synthesizer to get the frequency near the 
atomic transition.
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Modified Leeson’s Equation for Phase Noise

fm: frequency offset from the center frequency
fo: center frequency
fc: flicker frequency
Qload: loaded Q of the tuned circuit
F: noise factor (linear value for noise figure in dB 

scale)
kBT: 4.1 x 10-21 at 300K
Ps,av: average power at oscillator 
R: equivalent noise resistance of tuning diode 
Ko: oscillator voltage gain
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Expected Phase Noise At 4.6 GHz
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Measured HBAR-based Oscillator’s Phase Noise:  -102dBc/Hz @ 10kHz offset
Center frequency (fo): 3.68 GHz
HBAR’s Q (Qload): 19,000
Power consumption (Ps,av): 3.2 mW

Expected HBAR-based Oscillator’s Phase Noise: -95dBc/Hz @ 10kHz offset
Center frequency (fo): 4.6 GHz
HBAR’s Q (Qload): 11,000 (based on the measured fQ product)
Power consumption (Ps,av): 3.2 mW

Hittite’s HMC429LP4’s Phase Noise:  -85dBc/Hz @ 10kHz offset
Center frequency (fo): 4.45 – 5.0 GHz
Power consumption (Ps,av): 90 mW

HBAR oscillator reduces the power consumption 30 times, yet still improves 
the phase noise by 10dBc/Hz, compared to a commercial VCO.
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Expected Phase Noise At 9.19 GHz

{ }
( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

⎭
⎬
⎫

⎩
⎨
⎧
+

⎭
⎬
⎫

⎩
⎨
⎧
+= 2

m

2
oB

av,s

B

m

c
2

loadm

2
o

m f
TRKk2

P2
TFk

f
f1

Qf2
f1log10fL

Expected HBAR-based Oscillator’s Phase Noise: -79dBc/Hz @ 10kHz offset
Center frequency (fo): 9.19 GHz
HBAR’s Q (Qload): 4,680 (based on the measured fQ product)
Power consumption (Ps,av): 3.2 mW
Noise factor F: about two times larger than that at 3.68 GHz
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Resonant Mass Sensors

Actuation:
Optical
Electrostatic
Magnetic

Sensing:
Optical
Capacitive
Piezoresistive

Output in frequency,monitored by electrical readout
Inherent noise immunity, easy interface with digital 
systems 
Excellent minimum detectable mass, high  
sensitivity.

f0

f1

Self actuation and sensing (with piezoelectric ZnO or AlN) 
Film bulk acoustic resonator (FBAR)

More than 100 million FBARs per year produced in 6” CMOS fabs

Piezoelectric Piezoelectric
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FBAR as a Mass Sensor

FBAR consists of a deposited piezoelectric film, two metal 
electrodes and a supporting diaphragm (optional).

its resonant frequency of ~GHz is determined by the thickness of its layers
the resonant frequency decreases with any mass added to its surface.

Al

ZnO

Al

Al

ZnO

Al

added mass
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MEMS Resonator Characteristics
(Piezoelectric vs. Electrostatic)

Electromechanical 
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Minimum Detectable Mass (MDM)

Minimum detectable mass (MDM) is determined by
resonator frequency fluctuation (thermo-mechanical noise) 
resonator mass
noise of detection circuit

effm
f
fm
0

0δδ ≈

Noise Floor

Resonator Mass

Q factor

Nano-scale resonator has low mass, but also has low Q in air
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Mass Sensitivity in cm2/g

Mass sensitivity defined as resonant frequency change (Δf/f) per 
added mass (Δm’ in g/cm2) is

(QCM) ceMicrobalan Crystal Quartz MHz 6 for     /gcm      
Sensor Mass LEM MHz 60 for     /gcm      

Sensor Mass FBAR GHz 1.4 for     /gcm      
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This sensitivity in cm2/g is to be used for mass sensors detecting mass 
concentration (e.g., g/cc) in sensing environment. 

For detecting absolute mass quantity (e.g., g) brought to mass senor, 
the sensitivity in g/Hz is a better barometer for intrinsic sensing capability.
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Mass Sensitivity in g/Hz

LEM piezoelectric resonant sensor

FBAR mass sensor

NEMS cantilever mass sensor
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l: length of resonator
w: width of resonator
d: thickness of resonator
ρ: density
Va: acoustic velocity

Sm of ~10-18 g/Hz is obtained with 
a NEMS sensor having  l = 2μm 
and w = 2μm.

The smaller, the better.

LEM and FBAR sensors 
have comparable mass 
sensitivity with NEMS 
sensor when the lateral 
dimensions (e.g., w and l) 
are reduced.
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FBAR Mass Sensor

Vapor Mass Sensing

Easy packaging, array formation and impedance matching to 50Ω.
Small size (100 μm ×100 μm×2 μm)
Operational in air and water.
High mass sensitivity.

10-18 g/Hz with small FBAR (10 μm×10 μm×2 μm).

Mass Sensing in Liquid
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Measured FBAR Response in Hg2+

Solution

Hg2+

Au-Hg amalgamation

DI water

10-5 M Hg2+ solution
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Measured Mercury Ion Sensing by FBAR

Detection limit: ~ 10-9 M Hg2+ (0.2 ppb)
According to the Environmental Protection Agency (EPA), drinking water 

should have Hg2+ concentration no higher than 2 ppb.

The sensor can be re-usable, since
the mercury ion can be released from the gold layer by brief heating or by 24 

hour incubation at room temperature in a mercury-free atmosphere [McNerny J J, 
Buseck P R and Hanson R C 1972 Science 178, 611].
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Selectivity of the FBAR Mercury Sensor

The selectivity of the Au-coated FBAR sensor for Hg2+ over other cations
such as K+, Ca2+, Mg2+, Zn2+, Ni2+ is measured to be extremely good. 

None of the cations (all with a concentration of 10-4 M) can produce any 
significant frequency shift, while the FBAR resonant frequency changes 
around 90 kHz for 10-5 M Hg2+
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Lateral Extensional Mode (LEM) 
Piezoelectric Resonator
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Fabrication of LEM Piezoelectric Resonator

XeF2 dry release with silicon as a sacrificial layer
CMOS compatible.

AlSiNx

ZnO      Si

XeF2XeF2

Bottom Al

Top Al

ZnO

w

L

Resonant frequency is photolithographically definable.
Impedance could be decreased by increasing the length (L).
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Measured Characteristics of LEM 
Piezoelectric Resonator
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Relatively high electro-mechanical coupling coefficient and Q
Q is mainly determined by internal material property

Q of flexurally vibrating resonator is determined by viscous damping of air
About 500 Ω impedance at fs (≈61 MHz).
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Resonant Frequency Shift  Due to Mass Loading

Width(w) or Length(l)

Resonance frequency (f0) is 
determined by lateral dimension 
(width or length), not thickness (d).

The mass added on the top or 
bottom surface has little effect on 
the resonant frequency.

The mass added on the sidewalls 
has pronounced effect on the 
resonant frequency.
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Al
ZnO

Measured Resonant Frequency Shift  
Due to Mass Loading
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Minimum Detectable Mass and 
Mass sensitivity

When mass change is much smaller than the mass of the resonator itself:

0.1ppm noise floor corresponds to a 
minimum detectable mass change of 
4.6×10-15g on the resonator’s sidewall. 
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Mass sensitivity: 0.1 ppm noise is dominated by 
resonator’s sensitivity to temp. fluctuation 

Resonator TCF: ~-40 ppm/ºC
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Isopropanol Vapor Detection in Air

The A, B and C are time points when different amounts of IPA are added. 
Minimum detectable frequency shift of ~1.6ppm corresponds to an added 

mass of about 73fg. 
totalm

f
fm
0

δδ ≈

Measured Response of the LEM 
Resonator Coated with Parylene.
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Flexurally
vibrating   
cantilever

Resonant Mass 
Sensor

LEM piezoelectric 
resonator

FBAR

laser 
detection 

sensing
capacitive

Device dimension
w×l×t (μm3)

200×50×1             60MHz

200×200×1.5          1.5GHz  

2×6×0.7              2.2MHz

20×0.425×0.6        1.45MHz

Operating
frequency

Q factor

In air     in water

1400        64                    73 fg

~250         40                ~1300 fg

25         N.A.                 5.5 fg

70          N.A.                 57 fg

Minimum
detectable mass

(MDM) in air

LEM piezoelectric resonant sensor
femtogram mass detection in air, at room temperature.
portability, low power consumption.
MDM is expected to be 1,000 times better by shrinking the size.

real-time detection of molecules without vacuum.

LEM Sensor in Comparison with Other 
Resonant Mass Sensors in Air
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Microprobe with Resonant Mass Sensor

FBAR mass sensor on probe tip
to detect neuron firing by sensing 

ion concentration change instead of 
potential change

•for studying biophysics of neural 
signal propagation.

to detect heavy metal ions, DNA 
hybridization, protein reaction, etc.

Film-Bulk-Acoustic-Resonator (FBAR)
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FBAR on Micromachined Probe

Platform

FBAR

Shank

FBAR’s size minimized to be placed at proble tip.

1.5 mm

0.1mm

15μm

Support layer under FBAR must be thin for high Q.
Long leading electrode from FBAR to platform 

requires shank with low RF loss
SU-8 for the shank

•Much lower RF loss than silicon
•Flexible and sturdy
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Pictures of Released SU-8 Probes

200μm

100μm

forced to bend by about 70º
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SU-8 Probe Wire-bonded to Copper 
Transmission Line
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Summary

3.68 GHz oscillator based on HBAR having a loaded Q of 19,000
phase noise: -102dBc/Hz @10kHz offset
3.2 mW power consumption.
Allan deviation: 1.5x10-9 @ 1 sec for a free-running oscillator.

Single-mode HBAR with Q of 7,300 at 3.13 GHz
integrated with FBAR filter on a single chip 0.8×0.4×0.4mm3.

Temperature-compensated HBAR 
total frequency shift of 8.16ppm from 60 to 90°C.

1.4 GHz FBAR’s mass sensitivity of 726 cm2/g
minimum detectable mass density of 1 ng/cm2 in air where the Q is 250.

60 MHz LEM resonator
4.6 fg minimum detectable mass 
measured 73 fg isopropanol vapor detection

Attogram mass detection by scaling down the size to submicron scale. 
Hg2+ sensing by FBAR based sensor 

0.2 ppb minimum detection with FBAR having Q of 400.
Micromachined SU-8 probe with an integrated FBAR sensor at its tip


